
SANDIA REPORT
SAND2015-2428
Unlimited Release
Printed April 2, 2015

Preliminary Assessment of Tecplot
Chorus for Analyzing Ensemble of
CTH Simulations
Anthony M. Agelastos, Joel O. Stevenson, Stephen W. Attaway, David J. Peterson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2015-2428
Unlimited Release

Printed April 2, 2015

Preliminary Assessment of Tecplot Chorus for
Analyzing Ensemble of CTH Simulations

Anthony M. Agelastos
amagela@sandia.gov

Joel O. Stevenson
josteve@sandia.gov

Stephen W. Attaway
swattaw@sandia.gov

David J. Peterson
djpeter@sandia.gov

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185

Abstract

The exploration of large parameter spaces in search of problem solution and uncertainty
quantification produces very large ensembles of data. Processing ensemble data will continue
to require more resources as simulation complexity and HPC platform throughput increase.
More tools are needed to help provide rapid insight into these data sets to decrease manual
processing time by the analyst and to increase knowledge the data can provide. One such
tool is Tecplot Chorus, whose strengths are visualizing ensemble metadata and linked images.
This report contains the analysis and conclusions from evaluating Tecplot Chorus with an
example problem that is relevant to Sandia National Laboratories.

3

mailto:amagela@sandia.gov
mailto:josteve@sandia.gov
mailto:swattaw@sandia.gov
mailto:djpeter@sandia.gov

Acknowledgment

The authors of this document acknowledge the contributions from the following individuals:
Steven N. Kempka for providing funding for this investigation, John P. Korbin for assisting
with the example ensemble data, and Ryan P. Shaw for informing this document’s authors
about zealous cropping. Also, Tecplot, Inc. was extremely responsive and helpful with their
support of this evaluation.

4

Contents

Nomenclature 10

1 Introduction 11

2 Tecplot Chorus 13

2.1 Description . 13

2.2 System and Resource Impact . 16

2.3 Support and Pricing . 16

3 CTH Impact Example 19

3.1 Description . 19

3.2 Workflow Stage 1: Footprint Reduction . 20

3.3 Workflow Stage 2: Create CSV File for Each Seed . 21

3.4 Workflow Stage 3: Create Combined CSV Files . 21

3.5 Processing Available Data with Tecplot Chorus . 21

3.6 Workflow Stage 4: Create Filtered CSV File . 28

4 Conclusions and Future Work 31

References 33

Appendix

A Ensemble Workflow Stage 1 with csvcreate.py 35

B Ensemble Workflow Stage 2 with csvcreate.py 39

5

C Ensemble Workflow Stage 3 with csvcreate.py 41

D Ensemble Workflow Stage 4 with csvcreate.py 43

E Notes and Reference for csvcreate.py 45

F Example Extending Chorus with Scripts 57

G Obtaining Documentation and Scripts 59

6

List of Figures

2.1 Tecplot Chorus DE 2013 Release 1 vendor data sheet . 15

2.2 North America price list for Tecplot Chorus as of June 1st, 2014 17

3.1 Initial configuration of explosively propelled flyer above witness plate 20

3.2 Initial Tecplot Chorus window; select [Create Project...] if this is the 1st

time data is being imported . 23

3.3 Tecplot Chorus wizard window for importing data; most of the time, the
[Delimited Text Reader] button should be pressed . 23

3.4 Tecplot Chorus 2nd wizard window for importing data; click on [Browse] and
navigate to the CSV file to import and select the appropriate delimiter, e.g.,
[Comma] . 24

3.5 Tecplot Chorus wizard window for setting the root folder; click [Browse] and
navigate to the folder where csvcreate.py was invoked since the image file
paths are relative to this location . 24

3.6 Tecplot Chorus wizard window for specifying columns containing image files;
check the column names that contain image file locations and provide a “Tag”
for their reference . 25

3.7 Tecplot Chorus wizard window for setting variable nature, e.g., indepen-
dent, dependent, or other; for CTH Impact Example, “angle_of_awesome”,
“exp_thick”, “fly_thick”, “Identifier”, “TIME”, and “CYCLE” are the
only independent variables . 25

3.8 Tecplot Chorus window providing Table View . 26

3.9 Tecplot Chorus window providing image Matrix View; “OutputNum” 255 (line
number 255 of CSV file ignoring its header) at time 3.81015e-05 is the first
image to exhibit impact . 27

3.10 Tecplot Chorus Label Images window set to label images with TIME 27

3.11 Tecplot Chorus Matrix view showing side-by-side pressure plots at impact . . . 28

7

3.12 Tecplot Chorus 3D Scatter Plot view showing temporal trend of velocity mag-
nitudes at different locations colored by Dakota seed number 29

3.13 Tecplot Chorus 2D Scatter Plot view showing the reference angle as a function
of Dakota seed number and colored by explosive thickness 29

3.14 Tecplot Chorus Line Plot view showing the velocity magnitude of tracer 1 as
a function of time grouped by Dakota seed number . 30

3.15 Tecplot Chorus Selected Image view; a point within the Line Plot window is
selected and the figure is displayed within the Selected Image window 30

A.1 Tecplot Chorus maximized and displaying an image with maximum zoom . . . 36

8

List of Tables

4.1 Computational and user time spent performing evaluation of CTH Impact
Example with Tecplot Chorus . 32

A.1 File sizes of workdir.1/*000000.jpg as image operations are performed 36

9

Nomenclature

DOE U.S. Department of Energy

SNL Sandia National Laboratories

CSV Comma-separated values (file that stores comma-delimited tabular data in plain text)

JPEG Joint Photographic Experts Group (image file format with compression)

PNG Portable Network Graphics (image file format with compression)

KB Kilobyte, 10241 bytes

MB Megabyte, 10242 bytes

GB Gigabyte, 10243 bytes

HPC High-performance computing

CEE SNL’s Common Engineering Environment (https://prod.sandia.gov/cee/)

LAN Local area network

10

https://prod.sandia.gov/cee/

Chapter 1

Introduction

This report documents a preliminary evaluation of Tecplot Chorus for analyzing ensemble
data from CTH simulations. The project that funded this report and evaluation is also
evaluating and guiding development with SNL’s Slycat[1]. Slycat and Tecplot Chorus each
have their strengths, weaknesses, and overlapping capabilities. It is quite likely that, as the
scale of ensemble data increases, both of these tools (and possibly others) will be needed for
different processing goals. This report will focus on Tecplot Chorus and its application to an
example ensemble of data supplied by David J. Peterson and John P. Korbin; this example
is of a flyer plate impact and weld study henceforth referred to as CTH Impact Example.

This evaluation also defines a workflow for analysts that can help reduce the time and
resources for processing ensemble data. This workflow’s stages are enumerated below.

1. Minimize the footprint of ensemble metadata and supporting files, e.g., images. This
stage will increase the portability of the ensemble in addition to increasing the efficiency
that other tools, e.g., Tecplot Chorus, Slycat, can process it.

2. Create a database for each seed within the ensemble. This stage allows for seed-specific
processing and for easy seed-based combining into larger databases.

3. Create a database for the entire ensemble. This stage creates a monolithic ensemble
database that can either be processed with other tools or used as a single point to
further filter.

4. Reduce the entire ensemble database using problem-specific filters. This stage will
reduce the monolithic ensemble database into something that is manageable by the
tools used for processing and for the analysts to comprehend.

This Ensemble Workflow will be referenced throughout this report. Defining a workflow
allows for many focused tools to interact with one another for a common goal. Since ensemble
processing will likely differ across projects, there will likely not be a one-size-fits-all tool or
paradigm, but instead a collection of tools that are hopefully easy to integrate with each
other to achieve the desired processing.

The list below describes each chapter and its intended audience.

11

Chapter 2 This chapter provides a SNL-centric overview of Tecplot Chorus. This chapter
should be referenced by analysts who wish to use Chorus, system administrators who
wish to install Chorus, and program managers who decide whether or not to procure
Chorus.

Section 2.1 This section provides a general overview of Tecplot Chorus.

Section 2.2 This section provides a platform-centric analysis of Tecplot Chorus, in-
cluding a description of the resources Chorus requires.

Section 2.3 This section provides pricing and support information for Tecplot Chorus.

Chapter 3 This chapter provides an overview of the CTH Impact Example. This chapter’s
target audience is for analysts, however it may be beneficial for others who would like
to better understand how Chorus applies to a relevant workflow.

Section 3.1 This section provides a description of the CTH Impact Example ensemble.

Section 3.5 This section provides the step-by-step instructions for using Tecplot Cho-
rus to analyze the CTH Impact Example.

Sections 3.2, 3.3, 3.4, 3.6 These sections provide background information for ap-
plying the Ensemble Workflow to the CTH Impact Example.

Chapter 4 This chapter provides the conclusions from this report along with future work
for this project and related projects. This chapter’s target audience is for analysts and
program managers.

Appendix A This appendix provides guidance for batch processing image files to conserve
resources, i.e., Ensemble Workflow 1.

Appendix B This appendix provides guidance for creating CSV files for each seed of the
CTH Impact Example, i.e., Ensemble Workflow 2.

Appendix C This appendix provides guidance for creating monolithic CSV files, i.e., En-
semble Workflow 3.

Appendix D This appendix provides guidance for filtering CSV files, i.e., Ensemble Work-
flow 4.

Appendix E This appendix provides additional background information on csvcreate.py,
a Python script that was created to interface Tecplot Chorus with the CTH Impact
Example.

Appendix F This appendix provides the example codes given from Tecplot to show how
to extend Chorus with user functions.

Appendix G This appendix provides guidance for obtaining the source code for this report
and the scripts contained within.

12

Chapter 2

Tecplot Chorus

This chapter provides a brief introduction to Tecplot Chorus.

2.1 Description

Tecplot, Inc.[2] develops visualization products. Their product for visualizing ensemble data
is Tecplot Chorus[3]; the version of Chorus at the time of this writing is DE 2013 Release
1. Chorus is meant to analyze simulation metadata, incorporate simulation images, and
interface with their other products, e.g., Tecplot 360[4], to provide the end user with broad
tools for analyzing ensemble data. A comprehensive description of Tecplot Chorus is given
in the data sheet[5] supplied from Tecplot, Inc. shown in Figure 2.1; page 1 of the data sheet
is Figure 2.1a and page 2 of the data sheet is Figure 2.1b.

One feature not mentioned within the data sheets is that Chorus’ functionality can be
extended through the use of Python scripts. Tecplot provided some examples of extended
functionality; these code snippets are provided within Appendix F for reference. An example
scenario that is relevant for CTH ensemble processing is to be able to right-click on a point
and to tell it to generate an animation from the available Spymaster output within that
directory with CTH’s makempeg function.

13

Try
Tecplot Chorus:
www.tecplot.com/trial

Simulation Analytics for Making Better Decisions Faster

Tecplot Chorus is a simulation analytics software package that integrates
market leading CFD post-processing, fi eld and metadata management
with powerful analytics to help engineers manage and analyze
collections of CFD simulations. An engineer using Tecplot Chorus can
compare multiple simulation cases in a single environment while
evaluating overall system performance.

Unifi ed Data and Project Management
• Populate the program’s database with import, extract, and fi le crawler tools.
• Create and manage multiple sets of CFD solutions.
• Filter the project cases using interactive fi ltering.
• Evaluate CFD fi eld data using Tecplot 360.
• Create and manage assets from plots to data extractions.

Advanced Analytics and Surrogate Modeling
• Create multi-dimensional surrogate models.
• Visualize multiple views of CFD results and fl ow fi eld physics in one unifi ed environment.
• Explore project results with linked table, XY and multi-dimensional scatter views.

Rapid Comparative Analysis of Field Data
• Compare selected plot images and fi eld data plots in n-by-n matrices or side-by-side views.
• Compare pixel-by-pixel diff erences for selected plot images.
• Calculate diff erences between fi eld variables on a grid for selected cases.

Batch Process Plot Creation
• Create and apply templates for generating plots across a set of cases.
• Create and apply templates for extracting surface data from the full

volume fi eld data across a set of cases.
• Create and run macros for extracting metadata from fi eld data

including like forces, moments, and maximums.
• Submit and manage multiple batch jobs.

Fast Physics Exploration and Visualization
• Pre-compute plots to rapidly analyze full sets of simulation cases.
• Quickly view plot images and solution data from the fl ow fi eld

with a single mouse click.
• Explore and fi lter an array of plots images.
• Explore the full 3D fl ow fi eld with slices,

streamtraces and iso-surfaces.

Easy Deployment
• Run on Windows and Linux.
• Choose from multiple licensing options.

w w w . t e c p l o t . c o m | 1 . 8 0 0 . 7 6 3 . 7 0 0 5M a s t e r t h e V i e w ™

© 2013 Tecplot, Inc. All rights reserved worldwide. Tecplot®, Tecplot Chorus™ and the Tecplot Chorus™ Logo are regis-
tered trademarks and “Master the View™” is a trademark of Tecplot, Inc., Bellevue, WA, USA.
All other trademarks are the property of their respective owners.

(a) Page 1

14

w w w . t e c p l o t . c o m | 1 . 8 0 0 . 7 6 3 . 7 0 0 5M a s t e r t h e V i e w ™

Tecplot Chorus

Many Applications
Tecplot Chorus helps engineers who run and
generate many simulation or test datasets.
The three most common applications:

1. Optimize a design
2. Analyze the operational envelope

of a confi guration
3. Investigate an engineering problem

In all three scenarios they need to manage
their datasets, discover the trends and
anomalies, and understand the underlying
physics that cause these variations.

Based on Customer Feedback
Customers told us — time and time again
— that they have massive amounts of data
and no tools to help them quickly identify
the trends and anomalies that may aff ect the
critical design decisions they make.

Their greatest fear is they’ll miss something
important.

Tecplot Chorus allows you to analyze your
test and simulation results in a parametric
space for a better understanding of the
underlying physics, and have greater
confi dence in the decisions you’re making.

The Tecplot Chorus Solution
Tecplot Chorus can easily analyze from
one to a thousand simulation cases at the
same time. It incorporates an easy-to-use
simulation data management system for
both test and computational data.

It also promotes greater collaboration and
effi ciencies among teams of engineers,
allowing them to archive and share
simulation data to avoid rework and to
support teamwork.

Tecplot Chorus integrates analysis and
quality assurance processes with fl exible
features that are designed to manage,
analyze, and visualize large amounts of
metadata, identify trends and anomalies, and
link them to the underlying physics. This can
result in more rapid prototyping of design
concepts for faster time to market.

Platforms
Tecplot Chorus is available on the Windows
7, 8, Vista and XP, and Linux platforms.

Software Maintenance Service
Each new license includes a one-year
Software Maintenance Service (SMS)
subscription, renewable annually for about
20% of the initial new license fee. It includes
all software updates released during the year
and unlimited access to technical support by
telephone, e-mail, and fax.

For more information about SMS, visit:
www.tecplot.com/SMS

Trial Software
Full-featured, free evaluation versions of
Tecplot Chorus are available upon request
at www.tecplot.com/trial or by contacting us
directly.

Contact Us
US and Canada
For more information on Tecplot Chorus,
to request an evaluation version, or a
quote, call us at 1 (800) 676-7568, or
send email to sales@tecplot.com.

International
For customers outside the US and Canada,
please visit our Web site for a list of
international distributors:
www.tecplot.com/distributors/

(b) Page 2

Figure 2.1: Tecplot Chorus DE 2013 Release 1 vendor data sheet

15

2.2 System and Resource Impact

The following list contains some system- and resource-centric observations from installing
and using Tecplot Chorus on the CTH Impact Example in Chapter 3.

1. Chorus can only see data on the system it is running on.

2. To use Chorus on a local computer, it would have to be running on the local computer
or it would have to run on a different system and be displayed on the local computer
by X11 forwarding or screen capture technology, e.g., VNC, NX, RGS. SNL’s LAN is
sufficient for X11 forwarding as long as both systems are within SNL.

3. Chorus will load all of the ensemble metadata provided to it into memory and will only
load images upon request. Chorus’ RAM requirements will grow as the metadata sizes
grow. The CTH Impact Example monolithic CSV file is approximately 753 MB and
contains 1,191 columns and 53,424 rows of data, totaling 63,627,984 total data points.
When Chorus loads this into memory, it is using upwards of 26 GB of RAM, which is
more than what is available on most laptop and desktop systems.

4. Chorus is unable to properly save its own Project and Session files on the monolithic
CSV file since it wants to save out a file that is larger than 2 GB and it was unable to;
32-bit issues within the code are the likely culprit.

5. After installation on a Linux system, an analyst only needs to add the installation
binary path to their own PATH environment variable. As a result, installing Chorus on
HPC platforms and interfacing with it via modules would be very easy.

2.3 Support and Pricing

The following list provides some support and pricing data for Tecplot Chorus.

∙ During this evaluation, Tecplot, Inc. has made its members available for video confer-
ences, telephone calls, and responding to many emails, all to either answer questions
or provide their own guided tutorials on Chorus features.

∙ Tecplot’s technical support has been very timely, e.g., during this evaluation a CSV
file was loaded into Chorus causing awkward behavior. The root cause of this was the
CSV file had duplicate-named columns. Within 24 hours of reporting the awkward
behavior, Tecplot had a patched version of Chorus available for download.

∙ Tecplot would like a SNL member of the workforce to be on their Council to help guide
development roadmaps and feature priority for their tools.

∙ The current pricing for Tecplot Chorus is shown in Figure 2.2.

16

Defi nitions

License: A license includes executable-only binary software
downloadable from www.tecplot.com, a license to use software,
documentation, and 12 months of Software Maintenance
Service (SMS).

Single-User License: If Licensee purchased a Single-User
License, Tecplot, Inc. allows one (1) designated individual, and
only that individual, the right to install the software on one (1)
work computer, one (1) home computer, and one (1) portable
computer. Concurrent use is not allowed.

Single-Facility Network License: If Licensee purchased a
Single-Facility Network License, Licensee may install and use
the software on any compatible computer on Licensee’s
internal local-area network (LAN) up to the licensed number of
concurrent users. A LAN is an internal computer network
confi ned to a building or group of buildings within a one
hundred (100) kilometer radius. The provided license manager
can be administered outside of the facility as long as the
software use is within a single facility.

Multi-Facility Network License: If Licensee purchased a
Multi-Facility Network License, Licensee may install and use the
Software on any compatible computer on Licensee’s
internal wide-area Network (WAN) up to the licensed number
of concurrent users. A WAN is defi ned as an internal computer
network or group of LANs that have no geographic
boundaries.

Perpetual License: A license to use software, at version
purchased or version received under Software Maintenance
Service (SMS), in perpetuity.
See also www.tecplot.com/support-policy/

Annual License: A license to use software for a 12 month
period. Includes Software Maintenance Service.

30 Day Money-Back Guarantee: If you are not completely
satisfi ed with the software, contact Tecplot, Inc. within thirty
(30) days of purchase for full refund of the purchase price
(after deactivation of your software).

Software Maintenance Service (SMS): SMS includes all
software updates released during the year and access to
technical support by telephone and email by one designated
person (plus one alternate). SMS renewal extends the initial
12-month support and software update service. For more
information, visit
http://www.tecplot.com/software-maintenance-services/.

Documentation: Visit http://www.tecplot.com/documentation
for documentation on each product.

To Order: Call 1.800.763.7005 or email campus@tecplot.com
with the software products and license types you are
ordering, the specifi c computer platforms and operating
systems, billing address, telephone/fax/email, and end-user
information. If ordering a Network License, include the number
of concurrent users. We accept company checks, MasterCard,
VISA, and American Express (please include card number and
expiration date with credit card orders). In the U.S. and Canada
we accept purchase orders from universities, government a
gencies, and major corporations.

Prices: Tecplot new license prices are listed in U.S. Dollars.
Prices are subject to change without notice. Please call to
confi rm current pricing. Import taxes and fees may be added
for sales outside the USA or Canada.

Eff ective June 1, 2014
North America Price List

Annual
Single Facility Network License $4,700/yr/user

Multi Facility Network License $9,400/yr/user

Perpetual
includes 1 (one) year Software Maintenance Service (SMS)

Single User License $5,875/user

Single Facility Network License $11,750/user

Multi Facility Network License $23,500/user

SMS Renewal 20% of license

SMS Update (up to 6 months expired) 25% of license

Product Update (SMS expired over 6 months) 40%-90% of license

Visit:

www.tecplot.com/chorus

w w w . t e c p l o t . c o m | 1 . 8 0 0 . 7 6 3 . 7 0 0 5M a s t e r t h e V i e w ™

Figure 2.2: North America price list for Tecplot Chorus as of June 1st, 2014

17

18

Chapter 3

CTH Impact Example

This chapter describes the CTH Impact Example and how it was post processed by Tecplot
Chorus.

3.1 Description

The CTH Impact Example utilizes SNL’s Dakota[6] to drive a parametric set of SNL CTH[7]
simulations. The primary purpose of this study is to determine explosive welding configura-
tions that best match known regions of weld phenomena identified from previous test data.
To this end, the study simulates a flat, semi-infinite witness plate with a flyer plate of varying
thickness at a set distance above it mating to a varying thickness of Detasheet 2000. This
initial configuration is shown in Figure 3.1 below. Along with these thickness parameters a
mechanical angle can also be varied. The net result is that a flyer of varying thickness can be
thrown at varying velocities and angles. The configuration that is shown to have the earliest
arrival time within the correct explosive+mechanical attack angle window for welding (i.e.,
5-14 deg at 1-2 km/s) is an optimal design choice. Notably this parametric study should also
be capable of ruling out spallation conditions that would be unsuitable for use. The initial
version of this ensemble has 100 Dakota evaluations, or seeds. To help determine earliest
arrival times and visually inspect the ensemble for viable, nonspalled configurations, David
J. Peterson, an author of this ensemble, wishes to achieve the following goals with the aid of
Tecplot Chorus.

1. Create a CSV file that contains all data from the CTH hscth file, the Dakota params.in
file, and the Spymaster images.

2. Visually inspect images to find, or verify, time of impact.

3. Determine the impact location.

4. Compute relative angle of impact.

The Ensemble Workflow described within Chapter 1 will be applied to these goals in the
following sections. A Python program named csvcreate.py was created to help facilitate
loading CTH Impact Example into Tecplot Chorus.

19

Explosive

Flyer

Witness

Figure 3.1: Initial configuration of explosively propelled flyer above witness plate

3.2 Workflow Stage 1: Footprint Reduction

The 1st stage of the Ensemble Workflow, which was previously enumerated within Chapter 1,
is to minimize the footprint of ensemble metadata and supporting files, e.g., images. This
stage will increase the portability of the ensemble in addition to increasing the efficiency
with which other tools, e.g., Tecplot Chorus, Slycat, can process the ensemble. This stage
will create new images that are space efficient. Please refer to Appendix A for detailed
instructions and background information for performing this stage. While this stage is
achieved with the command `csvcreate.py -0` and requires almost no analyst effort, there
is still time spent waiting for the conversions (a compressed copy is made for each image file)
to occur. This could be minimized as well if the conversion was built into the simulation

20

workflow. A typical wall time for this step with CTH Impact Example, from scratch, is
around 4 hours with full access to a system with 64 cores. Afterwards, there are 534,240
new workdir.*/*.png files.

3.3 Workflow Stage 2: Create CSV File for Each Seed

The 2nd stage of the Ensemble Workflow is to create a database for each seed within the
ensemble. This stage allows for seed-specific processing and for easy seed-based combining
into larger databases. This stage will create one CSV file per seed that correlates the hscth,
params.in, and Spymaster image files. Please refer to Appendix B for detailed instructions
and background information for performing this stage. Ultimately, this stage is achieved with
the command `csvcreate.py -1 -f PNG -n 2` and requires almost no analyst effort. The
time spent waiting for this step to complete is dependent upon the scale of the file system it
must crawl and how responsive the underlying file system is; typical wall times for this step
with CTH Impact Example are around 30 minutes. Afterwards, there are new workdir.*/
hscth.individual.csv files.

3.4 Workflow Stage 3: Create Combined CSV Files

The 3rd stage of the Ensemble Workflow is to create a database for the entire ensemble.
This stage creates a monolithic ensemble database that can either be processed with other
tools or used as a single point to further filter. this stage will create a monolithic CSV file,
named hscth.combined.csv and several “piecemeal” files, named hscth.combined#.csv,
that are pieces of the monolithic one. Please refer to Appendix C for detailed instructions
and background information for performing this stage. Ultimately, this stage is achieved with
the command `csvcreate.py -2` and requires almost no analyst effort. This command is
very quick and requires approximately 1 minute to complete.

3.5 Processing Available Data with Tecplot Chorus

After performing the steps within Sections 3.2, 3.3, and 3.4, there are several types of CSV
files available for processing. These types are listed below.

workdir.*/hscth.individual.csv: There is one of these CSV files for each seed.
hscth.combined*.csv: There are 10 of these files where the 1st one contains

data from workdir.1 through workdir.10, the 2nd

one contains data from workdir.11 through workdir.
20, and so forth.

21

hscth.combined.csv: This file contains the individual data from all workdir
directories.

Since all of these files are present, goal 1 is complete and goal 2 can be focused upon.
After executing the commands discussed in the previous sections, each of these CSV files
contain the following columnar data not initially present within the hscth file. This data
and their descriptions are listed below.

Identifier: This is the directory name that the hscth file was found within. If this name
is a typical Dakota working directory name, e.g., workdir.1, then it will only
contain the seed integer number rather than the whole name, e.g., 1.

OutputNum: This is the line number from that row’s hscth.individual.csv file where it
can be found.

angle_of_awesome, exp_thick, fly_thick: These are independent variables pulled in
from the Dakota params.in file; these variables correspond to the reference
angle, explosive thickness, and flyer thickness, respectively.

User1, User0: These are the 2 user variables created with the “-n 2” argument passed in
Section 3.3.

shap-Damage...blocks-shap-Position: These are the 10 different families of Spymaster
output for CTH Impact Example; in this case the PNG compressed output is
referenced, created from the argument “-f PNG” passed in Section 3.2, instead
of the default JPEG Spymaster output.

Figures 3.2-3.10 and their captions provide a step-by-step tutorial of importing any one
of the CSV files generated into Tecplot Chorus and using it for goal 2, which is to determine
the time of impact. These steps can be taken 100 times (1 for each workdir.*/hscth.
individual.csv file), 10 times (1 for each hscth.combined*.csv file), or 1 time for the sin-
gle hscth.combined.csv file. The load times increase as the CSV file size increases, so the
optimum may change with different ensemble data. For CTH Impact Example, the “piece-
meal” files, i.e., hscth.combined*.csv, were utilized since their load times are reasonable
and using Chorus’ filters to select which Identifier to view was efficient.

It may also be desirable to use Chorus to view the metadata for all times of impact.
To efficiently facilitate this, the OutputNum variable can be noted in addition to the im-
pact time. With this variable, the analyst can manually edit one of the User variables at
the line number specified by OutputNum within the workdir*/hscth.individual.csv files.
Loading in hscth.combined1.csv, determining the impact times for Identifier 1 through 10,
noting their OutputNum line numbers, and then manually editing the 10 workdir.*/hscth.
individual.csv files required almost 16 minutes. Performing this 10 times requires about
2.7 hours to manually determine all times of impact and to edit the CSV files to note this.

22

Figure 3.2: Initial Tecplot Chorus window; select [Create Project...] if this is the 1st

time data is being imported

Figure 3.3: Tecplot Chorus wizard window for importing data; most of the time, the
[Delimited Text Reader] button should be pressed

23

Figure 3.4: Tecplot Chorus 2nd wizard window for importing data; click on [Browse] and
navigate to the CSV file to import and select the appropriate delimiter, e.g., [Comma]

Figure 3.5: Tecplot Chorus wizard window for setting the root folder; click [Browse] and
navigate to the folder where csvcreate.py was invoked since the image file paths are relative
to this location

24

Figure 3.6: Tecplot Chorus wizard window for specifying columns containing image files;
check the column names that contain image file locations and provide a “Tag” for their
reference

Figure 3.7: Tecplot Chorus wizard window for setting variable nature, e.g., indepen-
dent, dependent, or other; for CTH Impact Example, “angle_of_awesome”, “exp_thick”,
“fly_thick”, “Identifier”, “TIME”, and “CYCLE” are the only independent variables

25

Figure 3.8: Tecplot Chorus window providing Table View

26

Figure 3.9: Tecplot Chorus window providing image Matrix View; “OutputNum” 255 (line
number 255 of CSV file ignoring its header) at time 3.81015e-05 is the first image to exhibit
impact

Figure 3.10: Tecplot Chorus Label Images window set to label images with TIME

27

3.6 Workflow Stage 4: Create Filtered CSV File

After Section 3.5, the impact times (goal 2) have been determined and noted within the
workdir*/hscth.individual.csv files. To create an updated, combined set of CSV files, re-
run `csvcreate.py -2`; now these updated User variables are within hscth.combined.csv
and hscth.combined*.csv. To extract only those points out, execute `csvcreate.py -3`,
which will quickly create a hscth.userfiltered.csv file. This file can be loaded into
Tecplot Chorus for further investigations. Some figures that showcase more Tecplot Chorus
useful views are given below in Figures 3.11-3.15.

The reduced, likely candidate solutions that have now been distilled can be further ana-
lyzed analytically or qualitatively to assess conditions such as angle of impact, final impact
closure time, spallation, or any other features that are desired. This approach provides an
efficient method to distill a medium to large dataset into a much more manageable grouping
for study. Often, this level of effort is what is required to be capable of making a reason-
able recommendation for design of testing that will follow. It provides a route that requires
relatively little future user scripting and provides a tool that an analyst can quickly utilize
for smaller projects where a fully automated optimization algorithm might not be required.
It meets the point where time of post-processing is adequately diminished to the degree
that further specialization of selection tools is unwarranted and a decision can be reached.
Furthermore, if a larger field of study is then determined to be required, a more thorough
parameter study can be run from the output from the initial scripts used to assemble the
hscth.combined*.csv or hscth.userfiltered.csv files.

Figure 3.11: Tecplot Chorus Matrix view showing side-by-side pressure plots at impact

28

Figure 3.12: Tecplot Chorus 3D Scatter Plot view showing temporal trend of velocity mag-
nitudes at different locations colored by Dakota seed number

Figure 3.13: Tecplot Chorus 2D Scatter Plot view showing the reference angle as a function
of Dakota seed number and colored by explosive thickness

29

Figure 3.14: Tecplot Chorus Line Plot view showing the velocity magnitude of tracer 1 as a
function of time grouped by Dakota seed number

Figure 3.15: Tecplot Chorus Selected Image view; a point within the Line Plot window is
selected and the figure is displayed within the Selected Image window

30

Chapter 4

Conclusions and Future Work

Analyzing ensemble data has many challenges, some of which are listed below.

Portability Ensemble data is expected to have a large file system footprint with many files.
Moving or copying this data may not be practical.

Data Locality Ensemble data will likely be generated on local and remote HPC platforms.
How and where the data are processed will be a function of tool and security require-
ments along with ensemble portability.

Processing Scalability As the number of simulations within an ensemble increase, so does
the time to process them individually and as a whole.

Tools need to be used and developed to assist with these growing challenges. One of
these tools is Tecplot Chorus, a tool for visualizing ensemble metadata and images, deriving
quantities from the metadata, and interfacing with other tools, e.g., Tecplot 360 to create
additional images to view. Chorus enabled an analysis of CTH Impact Example to visually
determine points of impact in an efficient manner. However, this does come with caveats,
some of which are listed below.

1. Chorus can only see data on the system it is running on.

2. To use Chorus on a local computer, it would have to be running on the local computer
with the ensemble data present or it would have to run on the platform with the data
and be displayed on the local computer by X11 forwarding or screen capture technology,
e.g., VNC, NX, RGS.

3. Chorus will load all of the ensemble metadata provided to it into memory and will
only load images upon request. Chorus’ RAM requirements will grow as the metadata
sizes grow. The CTH Impact Example monolithic CSV file is approximately 753 MB.
When Chorus loads this into memory, it is using upwards of 26 GB of RAM, which is
more than what is available on most laptop and desktop systems. Moreover Chorus is
unable to properly save its own Project and Session files on a dataset this large since
it wants to save out a file that is larger than 2 GB and it was unable to; 32-bit issues
within the code are the likely culprit.

31

4. Aside from filtering, Chorus does not have many analysis capabilities to help extract
quantities of interest.

Despite the caveats above, Chorus does have some compelling strengths, some of which
are listed below.

1. Chorus provides many views to visualize metadata; these views are Table View, Matrix
View (looking at a matrix of images), 3D Scatter Plot, 2D Scatter Plot, Line Plot, and
the ability to efficiently tile many open views in an organized fashion.

2. Chorus has easy-to-understand filtering with the sliders on the right side of their win-
dow that allow the analyst to select which ranges remain in all of the Views.

3. Chorus can create surrogate models of the data, which can be used to visually inter-
polate, extrapolate, or export to other tools such as MATLAB for further processing.

4. Chorus can create new variables on the fly based on simple arithmetic operations based
on existing variables.

5. If the simulations write out their data in file formats compatible with Tecplot 360,
Chorus can leverage 360 to create new views that are defined from a single example
and it will create those views for all other members of the ensemble in a batch sense.

If the analysis of interest has needs that align with Chorus’ strengths, then it will provide
a lot of value, assuming its shortcomings can be overcome with tools such as csvcreate.py
that can provide multiple scales of data to be loaded into Chorus. The timing information
from the evaluation performed in Chapter 3 and the Appendices is below within Table 4.1.

Table 4.1: Computational and user time spent performing evaluation of CTH Impact Example
with Tecplot Chorus

Computer Individual Elapsed
Task Time (min.) Time (min.) Time (min.)
Workflow 1 228.7 - 228.7
Workflow 2 17.1 - 245.8
Workflow 3 1.3 - 247.1
Visually Determine Impact - 158.4 405.5
Workflow 4 0.2 - 405.7
Totals 247.3 158.4 405.7

32

References

[1] sandialabs/slycat: Web-based science analysis and visualization platform. https://
github.com/sandialabs/slycat, September 2014.

[2] Tecplot Mission and Values. http://www.tecplot.com/the-company, September 2014.

[3] Tecplot Chorus - CFD Post processor, data manager, analytics tool. http://www.
tecplot.com/products/tecplot-chorus, September 2014.

[4] Tecplot 360 CFD post processing software to Analyze complex data. http://www.
tecplot.com/products/tecplot-360, September 2014.

[5] Tecplot Chorus DE - Simulation Analytics for Making Better Decisions Faster. http:
//download.tecplot.com/docs/Tecplot_Chorus_Datasheet.pdf, September 2014.

[6] B. M. Adams, M. S. Ebeida, M. S. Eldred, J. D. Jakeman, L. P. Swiler, J. A. Stephens,
D. M. Vigil, T. M. Wildey, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, K. T. Hu, L. E.
Bauman, and P. D. Hough. DAKOTA, A Multilevel Parallel Object-Oriented Frame-
work for Design Optimization, Parameter Estimation, Uncertainty Quantification, and
Sensitivity Analysis: Version 6.0 User’s Manual. Technical report SAND2014-4633, San-
dia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California
94550, July 2014.

[7] Sandia National Laboratories: CTH Shock Physics: Home. http://www.sandia.gov/
CTH/index.html, September 2014.

[8] ImageMagick: Convert, Edit, Or Compose Bitmap Images. http://www.imagemagick.
org, September 2014.

[9] Python Distribution and Integrated Analysis Environment | Enthought Canopy. https:
//www.enthought.com/products/canopy/, December 2014.

33

https://github.com/sandialabs/slycat
https://github.com/sandialabs/slycat
http://www.tecplot.com/the-company
http://www.tecplot.com/products/tecplot-chorus
http://www.tecplot.com/products/tecplot-chorus
http://www.tecplot.com/products/tecplot-360
http://www.tecplot.com/products/tecplot-360
http://download.tecplot.com/docs/Tecplot_Chorus_Datasheet.pdf
http://download.tecplot.com/docs/Tecplot_Chorus_Datasheet.pdf
http://www.sandia.gov/CTH/index.html
http://www.sandia.gov/CTH/index.html
http://www.imagemagick.org
http://www.imagemagick.org
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/

34

Appendix A

Ensemble Workflow Stage 1 with
csvcreate.py

This appendix discusses methods and motivations for batch processing image files. Analyzing
a plethora of images can be significantly slowed if the images themselves are not adequately
compressed. The CTH Impact Example contains a total of 534,240 Spymaster JPEG files
with a resolution of 3840x2160 pixels. These files use 237.1 GB of storage space. This section
provides an investigation of scalable methods for reducing the image storage requirements,
which will increase their portability and responsiveness with viewing.

The intended methodology for viewing the images is with Tecplot Chorus. A screenshot
of an image viewed within Tecplot Chorus from the CTH Impact Example is in Figure A.1.
The following enumerated list contains possible image operations that, after examining Fig-
ure A.1, may reduce the image sizes.

1. The images from Spymaster are saved within a JPEG format. Other formats, e.g.,
PNG, may require less storage space for the same image quality.

2. The image displayed within Tecplot Chorus in Figure A.1 contains a lot of unused
white space. Cropping the image and removing these unused pixels may help reduce
the image size. The Chorus window in Figure A.1 is maximized to use the full monitor’s
screen real estate and the image within is at the maximum zoom level that Chorus will
allow.

3. The image’s standard resolution is 3840x2160. The resolution of the entire Tecplot
Chorus window, which also encapsulates the image, is 1920x1142. This implies the
image as displayed on the screen is approximately 800x450 or 360,000 pixels, which is
significantly smaller than its standard resolution. Scaling the image to the maximum
size that Tecplot Chorus can accommodate may help reduce the image file size.

The image operations enumerated above are straightforward but would require a signifi-
cant amount of time to manually perform, therefore tools that can perform these operations
en masse are required. ImageMagick[8] is a suite of tools that meets this requirement and

35

Figure A.1: Tecplot Chorus maximized and displaying an image with maximum zoom

is already installed on most HPC platforms, so it was used to assess the impact of the
aforementioned image operations.

The image operations are scripted within csvcreate.py and can be invoked by executing
`csvcreate.py -0`. When that command is invoked, csvcreate.py will fork a sub-process
that executes a GNU BASH script that actually performs the operations. To make changes
to the image operations, first execute `csvcreate.py -0 -w` which will create a script in
the current directory named fixpics.sh. Then, make the necessary changes to fixpics.sh
and then execute `csvcreate.py -0`, which will pick up the fixpics.sh script within the
directory and use that.

Table A.1 shows the impact each operation from executing `csvcreate.py -0` has on
the workdir.1/*000000.jpg files from the CTH Impact Example.

Table A.1: File sizes of workdir.1/*000000.jpg as image operations are performed

Individual Total
Operation Size Reduction Reduction
Default 3,888 KB 0.0%
Convert from JPEG to PNG 1,200 KB 69.1% 69.1%
Crop and remove white space 1,008 KB 16.0% 74.1%
Scale to Chorus-relevant resolution 560 KB 44.4% 85.6%

Each of the image operations was shown to reduce file sizes. Cumulatively, the operations

36

reduced the file sizes of workdir.1/*000000.jpg by 85.6%. The output from executing
`csvcreate.py -0` on cee-build005 for all 534,240 JPEG files is shown below. Overall,
csvcreate.py performed those operations on all files within 3.8 hours. During that time
frame, approximately 40 images were processed per second. The 534,240 JPEG files consume
237.1 GB of space; the resultant PNG files created from the script consume 31.3 GB, which
is only 13.2% of the size of the initial JPEG files.

This portion of csvcreate.py is threaded. The ImageMagick program being called is
named convert, which itself is threaded; the number of threads it spawns is limited within
csvcreate.py by the variable MAGICK_THREAD_LIMIT. In addition to that, csvcreate.py
will create its own threads based on the JPEG files it finds; the maximum number of these
threads is limited within csvcreate.py by the variable NumThreads. The default values
within csvcreate.py are sensible, but may need to be adjusted depending on the system
and its load.

The Chorus-relevant resolution that csvcreate.py targets is the image resolution that
maintains the source image’s aspect ratio while targeting 360,000 total pixels. This cumula-
tive value of pixels was used based on the observation above that only 800x450 of an image
was being displayed.

1 $./csvcreate.py -0
2 csvcreate.py INFO: Did not find image formatting script; will use built-in script.
3 INFO: Will create 64 threads at a time
4 No. of files processed (displayed every 64 files): 534208
5 INFO: Finished with the following timing information:
6

7 real 228m42.588s
8 user 22453m51.787s
9 sys 677m15.662s

10 csvcreate.py INFO: These operations required 228.710247064 minutes to complete.

Output from executing `csvcreate.py -0`

1 #This script will crop and resize Spymaster output from
2 #CTH example with ImageMagick.
3

4 export MAGICK_THREAD_LIMIT=8
5

6 #GOOD PERFORMANCE BY SETTING NUMBER OF THREADS EQUAL TO 2X AVAILABLE
7 if test -f /proc/cpuinfo ; then
8 NumThreads=$(grep processor /proc/cpuinfo | wc -l)
9 NumThreads=${NumThreads:-8}

10 NumThreads=$((NumThreads * 2))
11 else
12 NumThreads=8
13 fi
14 if test $NumThreads -gt 64 ; then

37

15 NumThreads=64
16 fi
17 echo "INFO: Will create $NumThreads threads at a time"
18

19 convertme ()
20 {
21 if test ! -f "${1%.jpg}".png ; then
22 convert "${1}" -trim +repage -resize 360000@ -gravity center "${1%.jpg}".png
23 fi
24 }
25 export -f convertme
26

27 main ()
28 {
29 declare -i i
30 declare -i j
31 i=0
32 j=0
33 find . -type f -name "*.jpg" |
34 while read file ; do
35 if test $i -ge $NumThreads ; then
36 echo -ne "No. of files processed (displayed every $NumThreads files): ${j}"
37 wait
38 i=0
39 fi
40 convertme "${file}" &
41 ((i++))
42 ((j++))
43 #echo "Thread number: ${i}"
44 #echo -ne "Number of files processed: ${j}"
45 done
46 wait
47 echo
48 echo "INFO: Finished with the following timing information:"
49 }
50 export -f main
51

52 time main
53

54 exit 0

Threaded script to crop, scale, and convert Spymaster output to PNG with ImageMagick;
script is generated from the command `csvcreate.py -0 -w`

38

Appendix B

Ensemble Workflow Stage 2 with
csvcreate.py

The 2nd stage of the Ensemble Workflow is to create a database for each seed within the
ensemble. This stage allows for seed-specific processing and for easy seed-based combining
into larger databases. Most tools are able to export and import CSV files, which make it
a convenient interface for ensemble data. The CTH Impact Example contains CTH hscth
files, which are CSV files, for each directory. Additionally, each directory contains a Dakota
params.in file, which lists all of the parameters Dakota is changing. Finally, each directory
also contains Spymaster JPEG output that occurs at a smaller frequency than the hscth
output. The following list encapsulates the goals for the CSV files to be created for each
directory. These goals are also accomplished with csvcreate.py; the sub-bullets below list
relevant csvcreate.py notes.

∙ It is desired to be able to view CTH hscth files for each directory.

◇ The standard hscth files contain a 3-line header whereas most CSV readers prefer
a single-line header, so csvcreate.py ignores the 1st line, which just lists some
version and date information, and combines the 2nd and 3rd lines separated by a
semicolon.

∙ It is desired to be able to view CTH hscth files that are correlated with available
Spymaster image output.

◇ Currently, Spymaster image file names end with a zero-padded, six-digit cycle
number and a jpg extension, so csvcreate.py finds directories that contain hscth
files and, within those directories, looks for Spymaster image file names that have
the aforementioned characteristics

◇ The -f command line flag to csvcreate.py allows selecting either JPEG or PNG
(refer to Appendix A for how PNG files were created) to search for.

◇ Once csvcreate.py has found all hscth and Spymaster image files, it will read
the cycle numbers from hscth (column number 2) and from the Spymaster image
file names and only output the row of data that corresponds to a cycle number
present with both hscth and the image file.

39

* This methodology was used to create reduced-size CSV files with no blank
entries. Alternatives include listing all of the contents of the hscth file and
leaving the Spymaster image entries blank where applicable or, instead of
blank placeholders, using the images from the nearest available cycle number.
Either of these alternatives would be trivial to add to csvcreate.py.

◇ The image file column names correspond to their names that precede the cycle
number.

◇ The image file names are relative paths from where csvcreate.py was invoked.

∙ It is desired to add available Dakota params.in metadata to the resultant CSV files.

◇ Each time csvcreate.py finds a hscth file within a directory, it will then see if
that same directory contains a Dakota params.in file and, if it does, the Dakota
inputs listed within this file are automatically added to that directory’s resultant
CSV file.

∙ It is desired to add additional user variables (for manual editing) to the resultant CSV
files.

◇ By default, csvcreate.py will add 1 user variable (named User1) to the resultant
CSV files.

◇ The command line flag -n allows the user to change this number; currently, integer
values between and including 0 and 8 are permitted.

The output from executing csvcreate.py to create 2 user variable and use PNG output
instead of JPEG is given below.

1 $./csvcreate.py -1 -f PNG -n 2
2 csvcreate.py INFO: I will recursively walk this directory (/gpfs1/amagela/wrk/

TecplotChorusEvaluation/FromDavePeterson/Dak_trial_1) and find CTH hscth, CTH
Spymaster PNG images, and Dakota params.in files and correlate them.

3 csvcreate.py INFO: I found 301 directories.
4 csvcreate.py INFO: I found 1095003 files.
5 csvcreate.py INFO: I found hscth within /gpfs1/amagela/wrk/TecplotChorusEvaluation/

FromDavePeterson/Dak_trial_1/workdir.1.
6 csvcreate.py INFO: I found 4820 PNG files.
7 csvcreate.py INFO: Reading /gpfs1/amagela/wrk/TecplotChorusEvaluation/FromDavePeterson/

Dak_trial_1/workdir.1/params.in
8 csvcreate.py INFO: Reading /gpfs1/amagela/wrk/TecplotChorusEvaluation/FromDavePeterson/

Dak_trial_1/workdir.1/hscth
9 csvcreate.py INFO: Writing /gpfs1/amagela/wrk/TecplotChorusEvaluation/FromDavePeterson/

Dak_trial_1/workdir.1/hscth.individual.csv
10 csvcreate.py INFO: There will be 1091 columns in resultant CSV file
11 #####<REPEAT LAST 5 LINES (WITH CHANGING NO. OF PNG FILES) FOR 98 OTHER WORKDIR

DIRECTORIES>#####
12 csvcreate.py INFO: These operations required 17.1167577346 minutes to complete.

Output from executing `csvcreate.py -1 -f PNG -n 2`

40

Appendix C

Ensemble Workflow Stage 3 with
csvcreate.py

The 3rd stage of the Ensemble Workflow is to create a database for the entire ensemble.
This stage creates a monolithic ensemble database that can either be processed with other
tools or used as a single point to further filter. The creation of this monolithic database
is handled within csvcreate.py with the -2 command line argument. This argument will
also create “piecemeal” files that are the combination of a specified number of individual
hscth.individual.csv files. These “piecemeal” files, named hscth.combined#.csv where
is an integer listing the piece number, allow loading in smaller pieces for more efficient
processing, if needed.

When `csvcreate.py -2` is invoked, it forks a sub-process that runs a GNU BASH
script to perform the concatenation. This script can be exported to the current directory
with the command `csvcreate.py -2 -w` and it will be named combinecsv.sh; this script
is replicated at the end of this Appendix for reference. This script can be edited and, when
`csvcreate.py -2` is executed again, it will be run. The variable to control how many
hscth.individual.csv files are put into each “piecemeal” one is named NUMCSV.

Sample output from executing these scripts is given below.

1 $./csvcreate.py -2
2 csvcreate.py INFO: Did not find CSV concatenation script (combinecsv.sh); will use built-

in script.
3 INFO: Creating single, combined CSV file hscth.combined.csv
4 INFO: Creating piecemeal CSV file (hscth.combined1.csv)
5 INFO: Creating piecemeal CSV file (hscth.combined2.csv)
6 INFO: Creating piecemeal CSV file (hscth.combined3.csv)
7 INFO: Creating piecemeal CSV file (hscth.combined4.csv)
8 INFO: Creating piecemeal CSV file (hscth.combined5.csv)
9 INFO: Creating piecemeal CSV file (hscth.combined6.csv)

10 INFO: Creating piecemeal CSV file (hscth.combined7.csv)
11 INFO: Creating piecemeal CSV file (hscth.combined8.csv)
12 INFO: Creating piecemeal CSV file (hscth.combined9.csv)
13 INFO: Creating piecemeal CSV file (hscth.combined10.csv)
14 INFO: Finished after 78 seconds
15 csvcreate.py INFO: These operations required 1.29485498269 minutes to complete.

41

Output from executing `csvcreate.py -2`

1 #This defines the name of the combined CSV file
2 NEWFILE=hscth.combined.csv
3

4 #This defines the name of the CSV files to search for
5 INFILE=hscth.individual.csv
6

7 #This defines how many CSV files to put into a piecemeal CSV file
8 NUMCSV=10
9

10 echo "INFO: Creating single, combined CSV file ${NEWFILE}"
11 HEADER="$(find . -name $INFILE -print -quit)"
12 awk ’NR==1’ $HEADER > $NEWFILE
13 find . -type f -name $INFILE -print0 | xargs -0 -I file awk ’NR>1’ file >>$NEWFILE
14

15 NEWFILE=${NEWFILE%.csv}
16 inmcsv=$NUMCSV
17 ((inmcsv++))
18 jnmcsv=0
19 find . -type f -name $INFILE | sort -V |
20 while read file ; do
21 ((inmcsv++))
22 fileout="${NEWFILE}${jnmcsv}.csv"
23 if test $inmcsv -gt $NUMCSV ; then
24 inmcsv=1
25 ((jnmcsv++))
26 fileout="${NEWFILE}${jnmcsv}.csv"
27 echo "INFO: Creating piecemeal CSV file (${fileout})"
28 awk ’NR==1’ $HEADER > $fileout
29 fi
30 awk ’NR>2’ "${file}" >> $fileout
31 done
32

33 echo "INFO: Finished after $SECONDS seconds"

Script to combine CSV files generated from `csvcreate.py -2 -w` and named
combinecsv.sh

42

Appendix D

Ensemble Workflow Stage 4 with
csvcreate.py

The 4th Ensemble Workflow stage is to reduce the entire ensemble database using problem-
specific filters. This stage will reduce the monolithic ensemble database into something
that is manageable by the tools used for processing and for the analysts to comprehend.
For the CTH Impact Example, one of the User variables was manually edited to reflect
the impact time. A filter was created within csvcreate.py to only export these nonzero
User variables. To create a filtered CSV file (named hscth.userfiltered.csv) from the
combined CSV file (named hscth.combined.csv and created within Appendix C), simply
execute `csvcombine.py -3`. Example output from executing this script is shown below.

1 $./csvcreate.py -3
2 csvcreate.py INFO: These operations required 0.181731800238 minutes to complete.

Output from executing `csvcreate.py -3`

43

44

Appendix E

Notes and Reference for csvcreate.py

The full source code and a list of notes for csvcreate.py are given below.

∙ Pass -h or --help to csvcreate.py to view its help page.

∙ There are many dependencies to execute csvcreate.py. All of them are met with
Enthought’s Python 2.7 distribution[9] that is installed on the CEE LAN and on most
SNL HPC platforms.

∙ This script supports creating CSV files that are compatible with both Chorus and
Slycat; please use the -t or --tool command line options and specify either Slycat
or Chorus to select which tool to target.

∙ This tool was written solely for this evaluation and not for production use.

1 #!/usr/bin/env python
2 #VERSION 2.0|20141020
3 #On CEE, do module load apps/epd to get pre-installed Python 2.7
4 #On HPC, do module load canopy to get pre-installed Python 2.7
5

6 ### PREAMBLE ##############################
7 import argparse #parse command line options
8 import sys,os #handle "system" and "operating system" information
9 import random #create nice tags if needed

10 import datetime #create nice tags if needed
11 import subprocess #run external commands
12 import urllib #download files from internet
13 import time #understand how long program takes to run
14 import re #regex searching
15 import csv #reading and writing CSV files
16 from itertools import repeat #Initialize list of lists
17 import tempfile #creating temporary file
18

19 start_time = time.time()
20 CTHCycleDigits = 6 #CTH Spymaster JPEG files are output with this fixed-
21 # width field for cycle number
22 DEFIMGFORMAT="JPEG" #DEFAULT file format to search for

45

23 DEFNUMUSER=1 #DEFAULT number of user variables to add to CSV file
24 DEFINDCSVFILE=".individual.csv" #MANUALLY CHANGE WITHIN BASH SCRIPT BELOW
25 DEFTOOL="Slycat" #DEFAULT ensemble processing tool
26 DEFSRV="lynx" #DEFAULT server for accessing files
27 csvcombined=’hscth.combined.csv’
28 csvfiltered=’hscth.userfiltered.csv’
29

30 ### DEFINE COMMAND LINE OPTIONS ###########
31 ThisDescription = "This program creates CSV files for ensembles of simulations. It will

recursively walk the directory where it is invoked and export the new CSV file there.
"

32 ThisEpilog = "This program requires Python version 2.7 (‘module load apps/epd‘ on CEE LAN
, ‘module load canopy‘ on SNL HPC platforms) and is only tested on UNIX-compatible
systems."

33 parser = argparse.ArgumentParser(
34 description = ThisDescription,
35 epilog = ThisEpilog,
36 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
37 parser.add_argument("-v", "--version", action="version", version="%(prog)s 2.0")
38 parser.add_argument("-0", "--fixpics",
39 help="execute local fixpics.sh script to process image files; this is

useful so multiple arguments can be set for processing to occur afterwards",
40 action="store_true")
41 parser.add_argument("-1", "--hscth",
42 help="correlate CTH hscth with available JPEG and params.in files and

create hscth"+DEFINDCSVFILE+" files",
43 action="store_true")
44 parser.add_argument("-2", "--combinecsv",
45 help="combine correlated CSV files (hscth"+DEFINDCSVFILE+") into

single ("+csvcombined+") and piecemeal ones",
46 action="store_true")
47 parser.add_argument("-3", "--filtercsv",
48 help="extract rows from single CSV file ("+csvcombined+") containing

nonzero user variables into a filtered CSV file ("+csvfiltered+")",
49 action="store_true")
50 parser.add_argument("-t", "--tool",
51 type=str,
52 default=DEFTOOL,
53 choices=[’Slycat’,’Chorus’],
54 help="Ensemble processing tool that will read in resultant CSV file(s

)")
55 parser.add_argument("-f", "--formatImage",
56 type=str,
57 default=DEFIMGFORMAT,
58 choices=[’JPEG’,’PNG’],
59 help="Image format to search for")
60 parser.add_argument("-n", "--numUser",
61 type=int,
62 default=DEFNUMUSER,
63 choices=range(0,9),
64 help="Number of user variables to add to CSV file")
65 parser.add_argument("-s", "--server",
66 type=str,
67 default=DEFSRV,

46

68 help="Server hostname to be used for absolute file references")
69 parser.add_argument("-w", "--writeScripts",
70 help="Write the external scripts, when applicable, for the relevant

sections instead of executing; this is useful to override their default behavior",
71 action="store_true")
72 args = parser.parse_args()
73

74

75 ### DEFINE VARS AND TAGS ##################
76 ThisProg = os.path.basename(__file__)
77 #ThisDir = os.path.realpath(os.path.dirname(__file__))
78 ThisDir = os.getcwd()
79 ThisTime = datetime.datetime.now()
80 ThisRand = random.randint(10,99)
81 ThisTag = "_"+ThisTime.strftime(’%Y%m%d%H%M%S’)+str(ThisRand)
82 #print "{} INFO: The tag used for preserving files and directories is {}.".format(

ThisProg,ThisTag)
83 UserHome = os.path.expanduser("~")
84 #print "{} INFO: The user’s HOME directory is {}.".format(ThisProg,UserHome)
85

86

87

88 ### CREATE DEFINITIONS ####################
89 # This returns a sorted list of found items from a list
90 def regexList(mylist,regex):
91 result = []
92 for l in mylist:
93 match = re.search(regex,l)
94 if match:
95 result += [match.group(0)]
96 result.sort()
97 return result
98

99 # This reads in a Dakota params.in file if present
100 def paramsin(mydir):
101 myparamsin=mydir+’/params.in’
102 result = [[],[]]
103 if os.path.isfile(myparamsin):
104 print "{} INFO: Reading {}".format(ThisProg,myparamsin)
105 with open(myparamsin,’rb’) as params:
106 allparams = params.readlines()
107 params.close()
108 numvars = allparams[0].split()
109 numvars = int(numvars[3])
110 for myline in range(1,1+numvars):
111 varval = allparams[myline].split()
112 result[0].append(varval[1])
113 result[1].append(varval[3])
114 #print "{}".format(result[0])
115 #print "{}".format(result[1])
116 return result
117

118

119 # This returns a tuple containing the following 2 lists:

47

120 # 1. A list of lists of the JPEG file names: [family][cycle]
121 # 2. A list of lists of the JPEG file names’ cycle numbers: [family][cycle]
122 # 3. A list of the unique family names
123 def spyParse(mylist):
124 uniq = []
125 for l in mylist:
126 lpre = l.rsplit(’.’,1)
127 lpre = lpre[0]
128 lpre = lpre[0:len(lpre)-CTHCycleDigits]
129 uniq.append(lpre)
130 uniq = list(set(uniq))
131 # print "{} INFO: Image families found are: {}".format(ThisProg,uniq)
132 resultjpg = [[] for i in repeat(None,len(uniq))] #Initialize list of lists
133 resultcycle = [[] for i in repeat(None,len(uniq))] #Initialize list of lists
134 for l in mylist:
135 lpre = l.rsplit(’.’,1)
136 lpre = lpre[0]
137 lpre = lpre[0:len(lpre)-CTHCycleDigits]
138 li = uniq.index(lpre)
139 resultjpg[li].append(l)
140 li = 0
141 for l in resultjpg:
142 # print "{} INFO: Initial JPEG family entry: {}".format(ThisProg,l[0])
143 for m in l:
144 mi = m.rsplit(’.’,1)
145 mi = mi[0]
146 mi = mi[len(mi)-CTHCycleDigits:len(mi)]
147 mi = int(mi)
148 resultcycle[li].append(mi)
149 li += 1
150 # for l in resultcycle:
151 # print "{} INFO: Second iteration entry: {}".format(ThisProg,l[1])
152 return (resultjpg,resultcycle,uniq)
153

154

155

156 # This function reads in HSCTH files and correlates them with other JPEG files
157 # HSCTH file has following row description:
158 # 1: %Spymaster version information
159 # 2: Variable Names
160 # 3: Variable Descriptions
161 # n: Data (second column is CYCLE)
162 def hscthmod(resultjpg,resultcycle,uniq,hscthin):
163 onlyprintmax=1
164 onlyprinti=0
165 myfulldir = os.path.dirname(hscthin)
166 myreldir = os.path.relpath(myfulldir,ThisDir)
167 mydir = os.path.basename(os.path.dirname(hscthin))
168 myparamsin = paramsin(myfulldir)
169 regexdir=re.compile("^workdir\.\d+$")
170 match = re.search(regexdir,mydir)
171 if match:
172 mydir = mydir.rsplit(’.’,1)
173 mydir = mydir[len(mydir)-1]

48

174 if (len(resultjpg) != len(uniq) or len(resultcycle) != len(uniq)):
175 print "{} ERROR: Length mismatch".format(ThisProg)
176 sys.exit(1)
177 print "{} INFO: Reading {}".format(ThisProg,hscthin)
178 hscthout = hscthin+DEFINDCSVFILE
179 print "{} INFO: Writing {}".format(ThisProg,hscthout)
180 rownum=-1
181 with open(hscthin,’rb’) as csvin, open(hscthout,’wb’) as csvout:
182 hscthopenin = csv.reader(csvin, delimiter=’,’, skipinitialspace=True)
183 hscthopenout= csv.writer(csvout)
184 iout=0
185 for row in hscthopenin:
186 rownum+=1
187 if rownum > 2:
188 cthcycle = int(row[1])
189 numhits=0
190 for m in resultcycle:
191 numhits += m.count(cthcycle)
192 if numhits != len(resultcycle):
193 continue
194 else:
195 jpgindex = []
196 famindex = 0
197 for m in resultcycle:
198 jpgindex.append(m.index(cthcycle))
199 for m in resultjpg:
200 if args.tool == ’Slycat’:
201 row.insert(0,args.server+’:’+myfulldir+’/’+m[jpgindex[

famindex]])
202 elif args.tool == ’Chorus’:
203 row.insert(0,myreldir+’/’+m[jpgindex[famindex]])
204 else:
205 row.insert(0,args.server+’:’+myfulldir+’/’+m[jpgindex[

famindex]])
206 for m in range(0,args.numUser):
207 row.insert(0,0)
208 for m in myparamsin[1]:
209 row.insert(0,m)
210 iout += 1
211 row.insert(0,iout)
212 row.insert(0,mydir)
213 #print "{} INFO: Row: {}, Cycle: {}".format(ThisProg,rownum,cthcycle)
214 elif rownum == 1:
215 row1 = list(row)
216 continue
217 elif rownum == 2:
218 for m in range(0,len(row)):
219 row[m] = row1[m]+’; ’+row[m]
220 for m in uniq:
221 row.insert(0,m)
222 for m in range(0,args.numUser):
223 row.insert(0,’User’+str(m))
224 for m in myparamsin[0]:
225 row.insert(0,m)

49

226 row.insert(0,’OutputNum’)
227 row.insert(0,’Identifier’)
228 if onlyprinti < onlyprintmax:
229 print "{} INFO: There will be {} columns in resultant CSV file".

format(ThisProg,len(row))
230 else:
231 continue
232 hscthopenout.writerow(row)
233 csvin.close()
234 csvout.close()
235

236

237

238 # This function is mapped to --hscth
239 def hscth():
240 #Walk the file system
241 print "{} INFO: I will recursively walk this directory ({}) and find CTH hscth, CTH

Spymaster {} images, and Dakota params.in files and correlate them.".format(ThisProg,
ThisDir,args.formatImage)

242 p = []
243 d = []
244 f = []
245 i=0
246 for (dirpath, dirname, filename) in os.walk(ThisDir):
247 i+=1
248 print "{} INFO: Walking directory number {}\r".format(ThisProg,i),
249 #print "dirpath = {}".format(dirpath)
250 #print "dirname = {}".format(dirname)
251 #print "filename = {}".format(filename)
252 p.append(dirpath)
253 d.append(dirname)
254 f.append(filename)
255 print " "
256

257 #Gather statistical information
258 TotalDirs = len(p)
259 TotalFiles = 0
260 for i in range(0,len(f)):
261 TotalFiles += len(f[i])
262 print "{} INFO: I found {} directories.".format(ThisProg,TotalDirs)
263 print "{} INFO: I found {} files.".format(ThisProg,TotalFiles)
264

265 #Find hscth files
266 if args.formatImage == "JPEG":
267 regexjpg=re.compile("^.*\d{"+str(CTHCycleDigits)+"}\.(jpg|JPG|jpeg|JPEG)$")
268 elif args.formatImage == "PNG":
269 regexjpg=re.compile("^.*\d{"+str(CTHCycleDigits)+"}\.(png|PNG)$")
270 for i in range(0,len(f)):
271 resultjpg = []
272 resultcycle = []
273 uniq = []
274 if "hscth" in f[i]:
275 print "{} INFO: I found hscth within {}.".format(ThisProg,p[i])
276 jpg = regexList(f[i],regexjpg)

50

277 print "{} INFO: I found {} {} files.".format(ThisProg,len(jpg),args.
formatImage)

278 (resultjpg,resultcycle,uniq) = spyParse(jpg)
279 hscthmod(resultjpg,resultcycle,uniq,p[i]+’/hscth’)
280

281

282

283 #THIS FINDS INDIVIDUAL CSV FILES AND COMBINES THEM INTO A SINGLE ONE AND A PIECEMEAL ONE
284 # This was written this way for speed... there is likely a 100% Python way of achieving

the same
285 # results without incurring a speed hit, but I couldn’t find it quickly...
286 def csvcombine():
287 script_one = ’’’\
288 #This defines the name of the combined CSV file
289 NEWFILE=hscth.combined.csv
290

291 #This defines the name of the CSV files to search for
292 INFILE=hscth.individual.csv
293

294 #This defines how many CSV files to put into a piecemeal CSV file
295 NUMCSV=10
296

297 echo "INFO: Creating single, combined CSV file ${NEWFILE}"
298 HEADER="$(find . -name $INFILE -print -quit)"
299 awk ’NR==1’ $HEADER > $NEWFILE
300 find . -type f -name $INFILE -print0 | xargs -0 -I file awk ’NR>1’ file >>$NEWFILE
301

302 NEWFILE=${NEWFILE%.csv}
303 inmcsv=$NUMCSV
304 ((inmcsv++))
305 jnmcsv=0
306 find . -type f -name $INFILE | sort -V |
307 while read file ; do
308 ((inmcsv++))
309 fileout="${NEWFILE}${jnmcsv}.csv"
310 if test $inmcsv -gt $NUMCSV ; then
311 inmcsv=1
312 ((jnmcsv++))
313 fileout="${NEWFILE}${jnmcsv}.csv"
314 echo "INFO: Creating piecemeal CSV file (${fileout})"
315 awk ’NR==1’ $HEADER > $fileout
316 fi
317 awk ’NR>2’ "${file}" >> $fileout
318 done
319

320 echo "INFO: Finished after $SECONDS seconds"
321 ’’’
322 SCRIPTNAME=’combinecsv.sh’
323 if args.writeScripts:
324 print "{} INFO: Will create CSV concatenation script ({}) and not execute.".

format(ThisProg,SCRIPTNAME)
325 with open(SCRIPTNAME,’wb’) as MYSCRIPT:
326 MYSCRIPT.write(script_one)
327 MYSCRIPT.close()

51

328 return
329 if os.path.isfile(SCRIPTNAME):
330 print "{} INFO: Found CSV concatenation script ({}), will use that.".format(

ThisProg,SCRIPTNAME)
331 subprocess.call([’/bin/bash’,SCRIPTNAME])
332 elif os.path.isfile(’/bin/bash’):
333 print "{} INFO: Did not find CSV concatenation script ({}); will use built-in

script.".format(ThisProg,SCRIPTNAME)
334 with tempfile.NamedTemporaryFile() as scriptfile:
335 scriptfile.write(script_one)
336 scriptfile.flush()
337 subprocess.call([’/bin/bash’, scriptfile.name])
338 scriptfile.close()
339 else:
340 print "{} WARNING: BASH and CSV concatenation script ({}) not found so aborting

the CSV concatenation.".format(ThisProg,SCRIPTNAME)
341

342

343

344 #THIS READS IN COMBINED CSV FILE AND WRITES OUT ONLY THE ROWS WHERE "User#" VARIABLES ARE
NONZERO

345 def csvfilter():
346 regexuser=re.compile("^User\d+$")
347 if os.path.isfile(csvcombined):
348 with open(csvcombined,’rb’) as csvin, open(csvfiltered,’wb’) as csvout:
349 csvopenin = csv.reader(csvin, delimiter=’,’, skipinitialspace=True)
350 csvopenout= csv.writer(csvout)
351 irow=0
352 users=[]
353 usersindex=[]
354 for row in csvopenin:
355 irow += 1
356 if irow == 1:
357 users = regexList(row,regexuser)
358 for user in users:
359 usersindex.append(row.index(user))
360 csvopenout.writerow(row)
361 else:
362 userstmp=[]
363 for m in usersindex:
364 userstmp.append(int(row[m]))
365 if any(v != 0 for v in userstmp):
366 csvopenout.writerow(row)
367 csvin.close()
368 csvout.close()
369 else:
370 print "{} WARNING: Combined CSV file ({}) not found so aborting the CSV filtering

.".format(ThisProg,csvcombined)
371

372

373

374 #THIS BATCH PROCESSES A LOT OF IMAGES FOR LOADING AND SAVING EFFICIENCY
375 # This was written this way for speed... there is likely a 100% Python way of achieving

the same

52

376 # results without incurring a speed hit, but I couldn’t find it quickly...
377 def picfix():
378 script_one = ’’’\
379 #This script will crop and resize Spymaster output from
380 #CTH example with ImageMagick.
381

382 export MAGICK_THREAD_LIMIT=8
383

384 #GOOD PERFORMANCE BY SETTING NUMBER OF THREADS EQUAL TO 2X AVAILABLE
385 if test -f /proc/cpuinfo ; then
386 NumThreads=$(grep processor /proc/cpuinfo | wc -l)
387 NumThreads=${NumThreads:-8}
388 NumThreads=$((NumThreads * 2))
389 else
390 NumThreads=8
391 fi
392 if test $NumThreads -gt 64 ; then
393 NumThreads=64
394 fi
395 echo "INFO: Will create $NumThreads threads at a time"
396

397 convertme ()
398 {
399 if test ! -f "${1%.jpg}".png ; then
400 convert "${1}" -trim +repage -resize 360000@ -gravity center "${1%.jpg}".png
401 fi
402 }
403 export -f convertme
404

405 main ()
406 {
407 declare -i i
408 declare -i j
409 i=0
410 j=0
411 find . -type f -name "*.jpg" |
412 while read file ; do
413 if test $i -ge $NumThreads ; then
414 echo -ne "No. of files processed (displayed every $NumThreads files): ${j}"\r
415 wait
416 i=0
417 fi
418 convertme "${file}" &
419 ((i++))
420 ((j++))
421 #echo "Thread number: ${i}"
422 #echo -ne "Number of files processed: ${j}"\r
423 done
424 wait
425 echo
426 echo "INFO: Finished with the following timing information:"
427 }
428 export -f main
429

53

430 time main
431

432 exit 0
433 ’’’
434 SCRIPTNAME=’fixpics.sh’
435 if args.writeScripts:
436 print "{} INFO: Will create image formatting script ({}) and not execute.".format

(ThisProg,SCRIPTNAME)
437 with open(SCRIPTNAME,’wb’) as MYSCRIPT:
438 MYSCRIPT.write(script_one)
439 MYSCRIPT.close()
440 return
441 if os.path.isfile(SCRIPTNAME) and os.path.isfile(’/bin/bash’):
442 print "{} INFO: Found image formatting script ({}), will use that.".format(

ThisProg,SCRIPTNAME)
443 subprocess.call([’/bin/bash’,SCRIPTNAME])
444 elif os.path.isfile(’/bin/bash’):
445 print "{} INFO: Did not find image formatting script ({}); will use built-in

script.".format(ThisProg,SCRIPTNAME)
446 with tempfile.NamedTemporaryFile() as scriptfile:
447 scriptfile.write(script_one)
448 scriptfile.flush()
449 subprocess.call([’/bin/bash’, scriptfile.name])
450 scriptfile.close()
451 else:
452 print "{} WARNING: BASH or image formatting script ({}) not found so aborting the

image formatting.".format(ThisProg,SCRIPTNAME)
453

454

455

456 ### DO WORK ###############################
457 # Create master CSV file from HSCTH and corresponding Spymaster JPEG files
458 if args.fixpics:
459 picfix()
460 if args.hscth:
461 hscth()
462 if args.combinecsv:
463 csvcombine()
464 if args.filtercsv:
465 csvfilter()
466

467

468

469 ### EXIT ##################################
470 if len(sys.argv) == 1:
471 print "{} HELP: No command line options were given; please pass either \"-h\" or \"--

help\" to view my help page.".format(ThisProg)
472 sys.exit(1)
473

474 print "{} INFO: These operations required {} minutes to complete.".format(ThisProg,(time.
time()-start_time)/60)

475

476 sys.exit(0)

54

Script to create CSV file from hscth and Spymaster image output

55

56

Appendix F

Example Extending Chorus with Scripts

Tecplot provided some scripts to show how to extend Chorus to add post-processing and
convenience features. These scripts are given below.

1 <?xml version="1.0"?>
2 <!DOCTYPE AuxFileActions>
3 <AuxFileActions>
4 <action enabled="true">
5 <name>Open With Chrome</name>
6 <exec>"C:/Python27/python.exe" "C:\Program Files\Tecplot\Tecplot Chorus DE 2013 Beta\

interop\actions\OpenWithChrome.py" "%INSTRUCTION_FILE%"</exec>
7 </action>
8 <action enabled="true">
9 <name>Open Containing Folder</name>

10 <exec>"C:/Python27/python.exe" "C:\Program Files\Tecplot\Tecplot Chorus DE 2013 Beta\
interop\actions\OpenContainingFolder.py" "%INSTRUCTION_FILE%"</exec>

11 </action>
12 <action enabled="false">
13 <name>Extract Data with Tecplot 360</name>
14 <exec>"/path/to/python" "/path/to/ExtractDataWithTecplot360.py" "%INSTRUCTION_FILE%"<

/exec>
15 </action>
16 <action enabled="false">
17 <name>Open Data with Paraview</name>
18 <exec>"/path/to/python" "/path/to/OpenWithParaview.py" "%INSTRUCTION_FILE%"</exec>
19 </action>
20 </AuxFileActions>

XML file that registers Python functions

1 # -*- coding: utf-8 -*-
2

3 import sys
4 import os
5 from JobInfo import *
6 import subprocess
7

8 instructionFile = sys.argv[1]

57

9 assert(os.path.exists(instructionFile))
10

11 jobInfo = JobInfo()
12 jobInfo.fromXMLFile(instructionFile)
13

14 os.remove(instructionFile)
15

16 for caseID, dataFiles in jobInfo.dataFiles().iteritems():
17 if len(dataFiles) > 0:
18 fileName = os.path.abspath(dataFiles[0])
19

20 # Windows only and only works for a single path
21 instruction = r’explorer /select, "%s"’ %(fileName)
22 subprocess.Popen(instruction)
23 break

Python function to open the folder of a selected point

1 # -*- coding: utf-8 -*-
2

3 import sys
4 import os
5 from JobInfo import *
6 import subprocess
7

8 instructionFile = sys.argv[1]
9 assert(os.path.exists(instructionFile))

10

11 jobInfo = JobInfo()
12 jobInfo.fromXMLFile(instructionFile)
13

14 os.remove(instructionFile)
15

16 for caseID, dataFiles in jobInfo.dataFiles().iteritems():
17 if len(dataFiles) > 0:
18 fileName = os.path.abspath(dataFiles[0])
19

20 # Windows only and only works for a single path
21 instruction = r’C:\Users\scottf\AppData\Local\Google\Chrome\Application\chrome.

exe "%s"’ %(fileName)
22 subprocess.Popen(instruction)
23 break

Python function to open some data within Chrome

58

Appendix G

Obtaining Documentation and Scripts

This report, created with LATEX2𝜀, and the source code of all scripts it contains is kept
within a Git repository on Lynx. The command to download a copy of this repository is
given below.

1 $ git clone lynx:/projects/hpc-scale/GITREPOS/EnsembleAnalysis.git
2 Cloning into ’EnsembleAnalysis’...
3 amagela@lynx’s password:
4 remote: Counting objects: 110, done.
5 remote: Compressing objects: 100% (108/108), done.
6 remote: Total 110 (delta 17), reused 0 (delta 0)
7 Receiving objects: 100% (110/110), 7.65 MiB | 1.13 MiB/s, done.
8 Resolving deltas: 100% (17/17), done.
9 Checking connectivity... done.

Command and its typical output to obtain a copy of the repository

59

DISTRIBUTION:

1 MS 0807 Anthony M. Agelastos, 9326
1 MS 0807 Joel O. Stevenson, 9326
1 MS 0840 Stephen W. Attaway, 1555
1 MS 0840 John P. Korbin, 1555
1 MS 0840 David J. Peterson, 1555
1 MS 0899 Technical Library, 9536 (electronic copy)

60

v1.38

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	2 Tecplot Chorus
	2.1 Description
	2.2 System and Resource Impact
	2.3 Support and Pricing

	3 CTH Impact Example
	3.1 Description
	3.2 Workflow Stage 1: Footprint Reduction
	3.3 Workflow Stage 2: Create CSV File for Each Seed
	3.4 Workflow Stage 3: Create Combined CSV Files
	3.5 Processing Available Data with Tecplot Chorus
	3.6 Workflow Stage 4: Create Filtered CSV File

	4 Conclusions and Future Work
	References
	A Ensemble Workflow Stage 1 with csvcreate.py
	B Ensemble Workflow Stage 2 with csvcreate.py
	C Ensemble Workflow Stage 3 with csvcreate.py
	D Ensemble Workflow Stage 4 with csvcreate.py
	E Notes and Reference for csvcreate.py
	F Example Extending Chorus with Scripts
	G Obtaining Documentation and Scripts

